sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2700, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([45,10,36]))
pari:[g,chi] = znchar(Mod(31,2700))
Modulus: | \(2700\) | |
Conductor: | \(2700\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(90\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2700}(31,\cdot)\)
\(\chi_{2700}(211,\cdot)\)
\(\chi_{2700}(331,\cdot)\)
\(\chi_{2700}(391,\cdot)\)
\(\chi_{2700}(511,\cdot)\)
\(\chi_{2700}(571,\cdot)\)
\(\chi_{2700}(691,\cdot)\)
\(\chi_{2700}(871,\cdot)\)
\(\chi_{2700}(931,\cdot)\)
\(\chi_{2700}(1111,\cdot)\)
\(\chi_{2700}(1231,\cdot)\)
\(\chi_{2700}(1291,\cdot)\)
\(\chi_{2700}(1411,\cdot)\)
\(\chi_{2700}(1471,\cdot)\)
\(\chi_{2700}(1591,\cdot)\)
\(\chi_{2700}(1771,\cdot)\)
\(\chi_{2700}(1831,\cdot)\)
\(\chi_{2700}(2011,\cdot)\)
\(\chi_{2700}(2131,\cdot)\)
\(\chi_{2700}(2191,\cdot)\)
\(\chi_{2700}(2311,\cdot)\)
\(\chi_{2700}(2371,\cdot)\)
\(\chi_{2700}(2491,\cdot)\)
\(\chi_{2700}(2671,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1351,1001,2377)\) → \((-1,e\left(\frac{1}{9}\right),e\left(\frac{2}{5}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 2700 }(31, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{22}{45}\right)\) |
sage:chi.jacobi_sum(n)