Properties

Label 2700.1907
Modulus $2700$
Conductor $180$
Order $12$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2700, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([6,10,3]))
 
Copy content pari:[g,chi] = znchar(Mod(1907,2700))
 

Basic properties

Modulus: \(2700\)
Conductor: \(180\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{180}(167,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2700.be

\(\chi_{2700}(143,\cdot)\) \(\chi_{2700}(1007,\cdot)\) \(\chi_{2700}(1043,\cdot)\) \(\chi_{2700}(1907,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.3099363912000000000.1

Values on generators

\((1351,1001,2377)\) → \((-1,e\left(\frac{5}{6}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2700 }(1907, a) \) \(-1\)\(1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{12}\right)\)\(-i\)\(1\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{6}\right)\)\(i\)\(e\left(\frac{1}{6}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2700 }(1907,a) \;\) at \(\;a = \) e.g. 2