sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(26752, base_ring=CyclotomicField(480))
M = H._module
chi = DirichletCharacter(H, M([0,405,288,80]))
pari:[g,chi] = znchar(Mod(3485,26752))
| Modulus: | \(26752\) | |
| Conductor: | \(26752\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(480\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{26752}(69,\cdot)\)
\(\chi_{26752}(141,\cdot)\)
\(\chi_{26752}(445,\cdot)\)
\(\chi_{26752}(597,\cdot)\)
\(\chi_{26752}(829,\cdot)\)
\(\chi_{26752}(1285,\cdot)\)
\(\chi_{26752}(1357,\cdot)\)
\(\chi_{26752}(1589,\cdot)\)
\(\chi_{26752}(1741,\cdot)\)
\(\chi_{26752}(1813,\cdot)\)
\(\chi_{26752}(2117,\cdot)\)
\(\chi_{26752}(2269,\cdot)\)
\(\chi_{26752}(2501,\cdot)\)
\(\chi_{26752}(2957,\cdot)\)
\(\chi_{26752}(3029,\cdot)\)
\(\chi_{26752}(3261,\cdot)\)
\(\chi_{26752}(3413,\cdot)\)
\(\chi_{26752}(3485,\cdot)\)
\(\chi_{26752}(3789,\cdot)\)
\(\chi_{26752}(3941,\cdot)\)
\(\chi_{26752}(4173,\cdot)\)
\(\chi_{26752}(4629,\cdot)\)
\(\chi_{26752}(4701,\cdot)\)
\(\chi_{26752}(4933,\cdot)\)
\(\chi_{26752}(5085,\cdot)\)
\(\chi_{26752}(5157,\cdot)\)
\(\chi_{26752}(5461,\cdot)\)
\(\chi_{26752}(5613,\cdot)\)
\(\chi_{26752}(5845,\cdot)\)
\(\chi_{26752}(6301,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((6271,14213,2433,14081)\) → \((1,e\left(\frac{27}{32}\right),e\left(\frac{3}{5}\right),e\left(\frac{1}{6}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
| \( \chi_{ 26752 }(3485, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{239}{480}\right)\) | \(e\left(\frac{437}{480}\right)\) | \(e\left(\frac{51}{80}\right)\) | \(e\left(\frac{239}{240}\right)\) | \(e\left(\frac{43}{480}\right)\) | \(e\left(\frac{49}{120}\right)\) | \(e\left(\frac{83}{120}\right)\) | \(e\left(\frac{13}{96}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{197}{240}\right)\) |
sage:chi.jacobi_sum(n)