sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2669, base_ring=CyclotomicField(208))
M = H._module
chi = DirichletCharacter(H, M([91,172]))
pari:[g,chi] = znchar(Mod(657,2669))
| Modulus: | \(2669\) | |
| Conductor: | \(2669\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(208\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2669}(41,\cdot)\)
\(\chi_{2669}(45,\cdot)\)
\(\chi_{2669}(54,\cdot)\)
\(\chi_{2669}(65,\cdot)\)
\(\chi_{2669}(78,\cdot)\)
\(\chi_{2669}(92,\cdot)\)
\(\chi_{2669}(116,\cdot)\)
\(\chi_{2669}(159,\cdot)\)
\(\chi_{2669}(165,\cdot)\)
\(\chi_{2669}(198,\cdot)\)
\(\chi_{2669}(249,\cdot)\)
\(\chi_{2669}(269,\cdot)\)
\(\chi_{2669}(316,\cdot)\)
\(\chi_{2669}(337,\cdot)\)
\(\chi_{2669}(346,\cdot)\)
\(\chi_{2669}(379,\cdot)\)
\(\chi_{2669}(430,\cdot)\)
\(\chi_{2669}(439,\cdot)\)
\(\chi_{2669}(448,\cdot)\)
\(\chi_{2669}(479,\cdot)\)
\(\chi_{2669}(500,\cdot)\)
\(\chi_{2669}(503,\cdot)\)
\(\chi_{2669}(516,\cdot)\)
\(\chi_{2669}(583,\cdot)\)
\(\chi_{2669}(605,\cdot)\)
\(\chi_{2669}(626,\cdot)\)
\(\chi_{2669}(651,\cdot)\)
\(\chi_{2669}(657,\cdot)\)
\(\chi_{2669}(669,\cdot)\)
\(\chi_{2669}(673,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1414,2517)\) → \((e\left(\frac{7}{16}\right),e\left(\frac{43}{52}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 2669 }(657, a) \) |
\(1\) | \(1\) | \(e\left(\frac{75}{104}\right)\) | \(e\left(\frac{51}{208}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{3}{208}\right)\) | \(e\left(\frac{201}{208}\right)\) | \(e\left(\frac{77}{208}\right)\) | \(e\left(\frac{17}{104}\right)\) | \(e\left(\frac{51}{104}\right)\) | \(e\left(\frac{153}{208}\right)\) | \(e\left(\frac{45}{208}\right)\) |
sage:chi.jacobi_sum(n)