![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2669, base_ring=CyclotomicField(208))
M = H._module
chi = DirichletCharacter(H, M([91,60]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2669, base_ring=CyclotomicField(208))
M = H._module
chi = DirichletCharacter(H, M([91,60]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(844,2669))
        pari:[g,chi] = znchar(Mod(844,2669))
         
     
    
  
   | Modulus: | \(2669\) |  | 
   | Conductor: | \(2669\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(208\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{2669}(41,\cdot)\)
  \(\chi_{2669}(45,\cdot)\)
  \(\chi_{2669}(54,\cdot)\)
  \(\chi_{2669}(65,\cdot)\)
  \(\chi_{2669}(78,\cdot)\)
  \(\chi_{2669}(92,\cdot)\)
  \(\chi_{2669}(116,\cdot)\)
  \(\chi_{2669}(159,\cdot)\)
  \(\chi_{2669}(165,\cdot)\)
  \(\chi_{2669}(198,\cdot)\)
  \(\chi_{2669}(249,\cdot)\)
  \(\chi_{2669}(269,\cdot)\)
  \(\chi_{2669}(316,\cdot)\)
  \(\chi_{2669}(337,\cdot)\)
  \(\chi_{2669}(346,\cdot)\)
  \(\chi_{2669}(379,\cdot)\)
  \(\chi_{2669}(430,\cdot)\)
  \(\chi_{2669}(439,\cdot)\)
  \(\chi_{2669}(448,\cdot)\)
  \(\chi_{2669}(479,\cdot)\)
  \(\chi_{2669}(500,\cdot)\)
  \(\chi_{2669}(503,\cdot)\)
  \(\chi_{2669}(516,\cdot)\)
  \(\chi_{2669}(583,\cdot)\)
  \(\chi_{2669}(605,\cdot)\)
  \(\chi_{2669}(626,\cdot)\)
  \(\chi_{2669}(651,\cdot)\)
  \(\chi_{2669}(657,\cdot)\)
  \(\chi_{2669}(669,\cdot)\)
  \(\chi_{2669}(673,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1414,2517)\) → \((e\left(\frac{7}{16}\right),e\left(\frac{15}{52}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) | 
    
    
      | \( \chi_{ 2669 }(844, a) \) | \(1\) | \(1\) | \(e\left(\frac{83}{104}\right)\) | \(e\left(\frac{19}{208}\right)\) | \(e\left(\frac{31}{52}\right)\) | \(e\left(\frac{99}{208}\right)\) | \(e\left(\frac{185}{208}\right)\) | \(e\left(\frac{45}{208}\right)\) | \(e\left(\frac{41}{104}\right)\) | \(e\left(\frac{19}{104}\right)\) | \(e\left(\frac{57}{208}\right)\) | \(e\left(\frac{29}{208}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)