Properties

Label 2668.bj
Modulus $2668$
Conductor $2668$
Order $44$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2668, base_ring=CyclotomicField(44)) M = H._module chi = DirichletCharacter(H, M([22,36,33])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(75,2668)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2668\)
Conductor: \(2668\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(44\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{44})\)
Fixed field: Number field defined by a degree 44 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{2668}(75,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{17}{44}\right)\)
\(\chi_{2668}(215,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{35}{44}\right)\)
\(\chi_{2668}(307,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{13}{44}\right)\)
\(\chi_{2668}(331,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{7}{44}\right)\)
\(\chi_{2668}(423,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{29}{44}\right)\)
\(\chi_{2668}(679,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{3}{44}\right)\)
\(\chi_{2668}(771,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{25}{44}\right)\)
\(\chi_{2668}(795,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{23}{44}\right)\)
\(\chi_{2668}(887,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{1}{44}\right)\)
\(\chi_{2668}(1143,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{43}{44}\right)\)
\(\chi_{2668}(1235,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{21}{44}\right)\)
\(\chi_{2668}(1375,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{15}{44}\right)\)
\(\chi_{2668}(1467,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{37}{44}\right)\)
\(\chi_{2668}(2187,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{19}{44}\right)\)
\(\chi_{2668}(2279,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{41}{44}\right)\)
\(\chi_{2668}(2303,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{31}{44}\right)\)
\(\chi_{2668}(2395,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{9}{44}\right)\)
\(\chi_{2668}(2419,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{27}{44}\right)\)
\(\chi_{2668}(2511,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{5}{44}\right)\)
\(\chi_{2668}(2651,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{39}{44}\right)\)