sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2668, base_ring=CyclotomicField(154))
M = H._module
chi = DirichletCharacter(H, M([77,7,44]))
pari:[g,chi] = znchar(Mod(1155,2668))
Modulus: | \(2668\) | |
Conductor: | \(2668\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(154\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2668}(7,\cdot)\)
\(\chi_{2668}(83,\cdot)\)
\(\chi_{2668}(103,\cdot)\)
\(\chi_{2668}(107,\cdot)\)
\(\chi_{2668}(111,\cdot)\)
\(\chi_{2668}(199,\cdot)\)
\(\chi_{2668}(227,\cdot)\)
\(\chi_{2668}(339,\cdot)\)
\(\chi_{2668}(343,\cdot)\)
\(\chi_{2668}(355,\cdot)\)
\(\chi_{2668}(431,\cdot)\)
\(\chi_{2668}(451,\cdot)\)
\(\chi_{2668}(471,\cdot)\)
\(\chi_{2668}(567,\cdot)\)
\(\chi_{2668}(571,\cdot)\)
\(\chi_{2668}(603,\cdot)\)
\(\chi_{2668}(663,\cdot)\)
\(\chi_{2668}(687,\cdot)\)
\(\chi_{2668}(779,\cdot)\)
\(\chi_{2668}(799,\cdot)\)
\(\chi_{2668}(803,\cdot)\)
\(\chi_{2668}(819,\cdot)\)
\(\chi_{2668}(835,\cdot)\)
\(\chi_{2668}(895,\cdot)\)
\(\chi_{2668}(935,\cdot)\)
\(\chi_{2668}(1031,\cdot)\)
\(\chi_{2668}(1147,\cdot)\)
\(\chi_{2668}(1155,\cdot)\)
\(\chi_{2668}(1167,\cdot)\)
\(\chi_{2668}(1183,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1335,465,553)\) → \((-1,e\left(\frac{1}{22}\right),e\left(\frac{2}{7}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 2668 }(1155, a) \) |
\(1\) | \(1\) | \(e\left(\frac{101}{154}\right)\) | \(e\left(\frac{51}{154}\right)\) | \(e\left(\frac{61}{77}\right)\) | \(e\left(\frac{24}{77}\right)\) | \(e\left(\frac{4}{77}\right)\) | \(e\left(\frac{60}{77}\right)\) | \(e\left(\frac{76}{77}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{58}{77}\right)\) | \(e\left(\frac{69}{154}\right)\) |
sage:chi.jacobi_sum(n)