sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2667, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,0,10]))
pari:[g,chi] = znchar(Mod(8,2667))
\(\chi_{2667}(8,\cdot)\)
\(\chi_{2667}(512,\cdot)\)
\(\chi_{2667}(764,\cdot)\)
\(\chi_{2667}(953,\cdot)\)
\(\chi_{2667}(1667,\cdot)\)
\(\chi_{2667}(2318,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((890,1144,2416)\) → \((-1,1,e\left(\frac{5}{7}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 2667 }(8, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)