Properties

Label 2667.43
Modulus $2667$
Conductor $127$
Order $126$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([0,0,71]))
 
Copy content pari:[g,chi] = znchar(Mod(43,2667))
 

Basic properties

Modulus: \(2667\)
Conductor: \(127\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{127}(43,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2667.ed

\(\chi_{2667}(43,\cdot)\) \(\chi_{2667}(85,\cdot)\) \(\chi_{2667}(106,\cdot)\) \(\chi_{2667}(337,\cdot)\) \(\chi_{2667}(547,\cdot)\) \(\chi_{2667}(736,\cdot)\) \(\chi_{2667}(820,\cdot)\) \(\chi_{2667}(946,\cdot)\) \(\chi_{2667}(967,\cdot)\) \(\chi_{2667}(1030,\cdot)\) \(\chi_{2667}(1072,\cdot)\) \(\chi_{2667}(1198,\cdot)\) \(\chi_{2667}(1240,\cdot)\) \(\chi_{2667}(1261,\cdot)\) \(\chi_{2667}(1282,\cdot)\) \(\chi_{2667}(1366,\cdot)\) \(\chi_{2667}(1450,\cdot)\) \(\chi_{2667}(1513,\cdot)\) \(\chi_{2667}(1744,\cdot)\) \(\chi_{2667}(1765,\cdot)\) \(\chi_{2667}(1807,\cdot)\) \(\chi_{2667}(1870,\cdot)\) \(\chi_{2667}(1912,\cdot)\) \(\chi_{2667}(1996,\cdot)\) \(\chi_{2667}(2017,\cdot)\) \(\chi_{2667}(2038,\cdot)\) \(\chi_{2667}(2080,\cdot)\) \(\chi_{2667}(2269,\cdot)\) \(\chi_{2667}(2332,\cdot)\) \(\chi_{2667}(2353,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((890,1144,2416)\) → \((1,1,e\left(\frac{71}{126}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 2667 }(43, a) \) \(-1\)\(1\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{1}{42}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{25}{42}\right)\)\(e\left(\frac{20}{63}\right)\)\(e\left(\frac{61}{63}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{26}{63}\right)\)\(e\left(\frac{1}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2667 }(43,a) \;\) at \(\;a = \) e.g. 2