sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2667, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,84,103]))
pari:[g,chi] = znchar(Mod(2006,2667))
Modulus: | \(2667\) | |
Conductor: | \(2667\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2667}(86,\cdot)\)
\(\chi_{2667}(170,\cdot)\)
\(\chi_{2667}(212,\cdot)\)
\(\chi_{2667}(233,\cdot)\)
\(\chi_{2667}(368,\cdot)\)
\(\chi_{2667}(464,\cdot)\)
\(\chi_{2667}(473,\cdot)\)
\(\chi_{2667}(515,\cdot)\)
\(\chi_{2667}(620,\cdot)\)
\(\chi_{2667}(641,\cdot)\)
\(\chi_{2667}(674,\cdot)\)
\(\chi_{2667}(683,\cdot)\)
\(\chi_{2667}(935,\cdot)\)
\(\chi_{2667}(947,\cdot)\)
\(\chi_{2667}(956,\cdot)\)
\(\chi_{2667}(1019,\cdot)\)
\(\chi_{2667}(1094,\cdot)\)
\(\chi_{2667}(1166,\cdot)\)
\(\chi_{2667}(1208,\cdot)\)
\(\chi_{2667}(1325,\cdot)\)
\(\chi_{2667}(1388,\cdot)\)
\(\chi_{2667}(1577,\cdot)\)
\(\chi_{2667}(1640,\cdot)\)
\(\chi_{2667}(1871,\cdot)\)
\(\chi_{2667}(1934,\cdot)\)
\(\chi_{2667}(2006,\cdot)\)
\(\chi_{2667}(2123,\cdot)\)
\(\chi_{2667}(2216,\cdot)\)
\(\chi_{2667}(2300,\cdot)\)
\(\chi_{2667}(2342,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((890,1144,2416)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{103}{126}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 2667 }(2006, a) \) |
\(1\) | \(1\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{95}{126}\right)\) | \(e\left(\frac{53}{63}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{29}{126}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)