Properties

Label 2667.13
Modulus $2667$
Conductor $889$
Order $126$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([0,63,94]))
 
Copy content pari:[g,chi] = znchar(Mod(13,2667))
 

Basic properties

Modulus: \(2667\)
Conductor: \(889\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{889}(13,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2667.ee

\(\chi_{2667}(13,\cdot)\) \(\chi_{2667}(34,\cdot)\) \(\chi_{2667}(265,\cdot)\) \(\chi_{2667}(328,\cdot)\) \(\chi_{2667}(412,\cdot)\) \(\chi_{2667}(496,\cdot)\) \(\chi_{2667}(517,\cdot)\) \(\chi_{2667}(538,\cdot)\) \(\chi_{2667}(580,\cdot)\) \(\chi_{2667}(706,\cdot)\) \(\chi_{2667}(748,\cdot)\) \(\chi_{2667}(811,\cdot)\) \(\chi_{2667}(832,\cdot)\) \(\chi_{2667}(958,\cdot)\) \(\chi_{2667}(1042,\cdot)\) \(\chi_{2667}(1231,\cdot)\) \(\chi_{2667}(1441,\cdot)\) \(\chi_{2667}(1672,\cdot)\) \(\chi_{2667}(1693,\cdot)\) \(\chi_{2667}(1735,\cdot)\) \(\chi_{2667}(1819,\cdot)\) \(\chi_{2667}(1840,\cdot)\) \(\chi_{2667}(1882,\cdot)\) \(\chi_{2667}(1987,\cdot)\) \(\chi_{2667}(2029,\cdot)\) \(\chi_{2667}(2050,\cdot)\) \(\chi_{2667}(2092,\cdot)\) \(\chi_{2667}(2113,\cdot)\) \(\chi_{2667}(2176,\cdot)\) \(\chi_{2667}(2365,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((890,1144,2416)\) → \((1,-1,e\left(\frac{47}{63}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 2667 }(13, a) \) \(-1\)\(1\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{17}{42}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{5}{42}\right)\)\(e\left(\frac{46}{63}\right)\)\(e\left(\frac{79}{126}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{107}{126}\right)\)\(e\left(\frac{1}{6}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2667 }(13,a) \;\) at \(\;a = \) e.g. 2