Properties

Label 2667.1088
Modulus $2667$
Conductor $2667$
Order $126$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([63,21,92]))
 
Copy content pari:[g,chi] = znchar(Mod(1088,2667))
 

Basic properties

Modulus: \(2667\)
Conductor: \(2667\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2667.eh

\(\chi_{2667}(17,\cdot)\) \(\chi_{2667}(26,\cdot)\) \(\chi_{2667}(290,\cdot)\) \(\chi_{2667}(479,\cdot)\) \(\chi_{2667}(542,\cdot)\) \(\chi_{2667}(773,\cdot)\) \(\chi_{2667}(824,\cdot)\) \(\chi_{2667}(836,\cdot)\) \(\chi_{2667}(866,\cdot)\) \(\chi_{2667}(1013,\cdot)\) \(\chi_{2667}(1025,\cdot)\) \(\chi_{2667}(1076,\cdot)\) \(\chi_{2667}(1088,\cdot)\) \(\chi_{2667}(1097,\cdot)\) \(\chi_{2667}(1319,\cdot)\) \(\chi_{2667}(1349,\cdot)\) \(\chi_{2667}(1391,\cdot)\) \(\chi_{2667}(1412,\cdot)\) \(\chi_{2667}(1466,\cdot)\) \(\chi_{2667}(1517,\cdot)\) \(\chi_{2667}(1559,\cdot)\) \(\chi_{2667}(1664,\cdot)\) \(\chi_{2667}(1739,\cdot)\) \(\chi_{2667}(1949,\cdot)\) \(\chi_{2667}(2063,\cdot)\) \(\chi_{2667}(2147,\cdot)\) \(\chi_{2667}(2180,\cdot)\) \(\chi_{2667}(2189,\cdot)\) \(\chi_{2667}(2201,\cdot)\) \(\chi_{2667}(2243,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((890,1144,2416)\) → \((-1,e\left(\frac{1}{6}\right),e\left(\frac{46}{63}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 2667 }(1088, a) \) \(1\)\(1\)\(e\left(\frac{17}{42}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{11}{42}\right)\)\(e\left(\frac{103}{126}\right)\)\(e\left(\frac{17}{126}\right)\)\(e\left(\frac{13}{21}\right)\)\(e\left(\frac{26}{63}\right)\)\(e\left(\frac{1}{6}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2667 }(1088,a) \;\) at \(\;a = \) e.g. 2