sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2667, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,21,92]))
pari:[g,chi] = znchar(Mod(1088,2667))
Modulus: | \(2667\) | |
Conductor: | \(2667\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2667}(17,\cdot)\)
\(\chi_{2667}(26,\cdot)\)
\(\chi_{2667}(290,\cdot)\)
\(\chi_{2667}(479,\cdot)\)
\(\chi_{2667}(542,\cdot)\)
\(\chi_{2667}(773,\cdot)\)
\(\chi_{2667}(824,\cdot)\)
\(\chi_{2667}(836,\cdot)\)
\(\chi_{2667}(866,\cdot)\)
\(\chi_{2667}(1013,\cdot)\)
\(\chi_{2667}(1025,\cdot)\)
\(\chi_{2667}(1076,\cdot)\)
\(\chi_{2667}(1088,\cdot)\)
\(\chi_{2667}(1097,\cdot)\)
\(\chi_{2667}(1319,\cdot)\)
\(\chi_{2667}(1349,\cdot)\)
\(\chi_{2667}(1391,\cdot)\)
\(\chi_{2667}(1412,\cdot)\)
\(\chi_{2667}(1466,\cdot)\)
\(\chi_{2667}(1517,\cdot)\)
\(\chi_{2667}(1559,\cdot)\)
\(\chi_{2667}(1664,\cdot)\)
\(\chi_{2667}(1739,\cdot)\)
\(\chi_{2667}(1949,\cdot)\)
\(\chi_{2667}(2063,\cdot)\)
\(\chi_{2667}(2147,\cdot)\)
\(\chi_{2667}(2180,\cdot)\)
\(\chi_{2667}(2189,\cdot)\)
\(\chi_{2667}(2201,\cdot)\)
\(\chi_{2667}(2243,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((890,1144,2416)\) → \((-1,e\left(\frac{1}{6}\right),e\left(\frac{46}{63}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 2667 }(1088, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{103}{126}\right)\) | \(e\left(\frac{17}{126}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{26}{63}\right)\) | \(e\left(\frac{1}{6}\right)\) |
sage:chi.jacobi_sum(n)