sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2667, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,21,11]))
pari:[g,chi] = znchar(Mod(1280,2667))
Modulus: | \(2667\) | |
Conductor: | \(2667\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(42\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2667}(167,\cdot)\)
\(\chi_{2667}(356,\cdot)\)
\(\chi_{2667}(461,\cdot)\)
\(\chi_{2667}(839,\cdot)\)
\(\chi_{2667}(1049,\cdot)\)
\(\chi_{2667}(1070,\cdot)\)
\(\chi_{2667}(1280,\cdot)\)
\(\chi_{2667}(1448,\cdot)\)
\(\chi_{2667}(1805,\cdot)\)
\(\chi_{2667}(1910,\cdot)\)
\(\chi_{2667}(1994,\cdot)\)
\(\chi_{2667}(2225,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((890,1144,2416)\) → \((-1,-1,e\left(\frac{11}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 2667 }(1280, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)