Properties

Label 2664.731
Modulus $2664$
Conductor $2664$
Order $18$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2664, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,9,3,17]))
 
Copy content pari:[g,chi] = znchar(Mod(731,2664))
 

Basic properties

Modulus: \(2664\)
Conductor: \(2664\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2664.eu

\(\chi_{2664}(707,\cdot)\) \(\chi_{2664}(731,\cdot)\) \(\chi_{2664}(2075,\cdot)\) \(\chi_{2664}(2171,\cdot)\) \(\chi_{2664}(2315,\cdot)\) \(\chi_{2664}(2435,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.18.467211011035452664209589591630054769442278080512.2

Values on generators

\((1999,1333,2369,1297)\) → \((-1,-1,e\left(\frac{1}{6}\right),e\left(\frac{17}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 2664 }(731, a) \) \(1\)\(1\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{7}{18}\right)\)\(-1\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{1}{18}\right)\)\(-1\)\(e\left(\frac{1}{9}\right)\)\(-1\)\(e\left(\frac{1}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2664 }(731,a) \;\) at \(\;a = \) e.g. 2