Properties

Label 2656.655
Modulus $2656$
Conductor $664$
Order $82$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2656, base_ring=CyclotomicField(82)) M = H._module chi = DirichletCharacter(H, M([41,41,21]))
 
Copy content pari:[g,chi] = znchar(Mod(655,2656))
 

Basic properties

Modulus: \(2656\)
Conductor: \(664\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(82\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{664}(323,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2656.r

\(\chi_{2656}(15,\cdot)\) \(\chi_{2656}(47,\cdot)\) \(\chi_{2656}(79,\cdot)\) \(\chi_{2656}(143,\cdot)\) \(\chi_{2656}(239,\cdot)\) \(\chi_{2656}(271,\cdot)\) \(\chi_{2656}(303,\cdot)\) \(\chi_{2656}(367,\cdot)\) \(\chi_{2656}(399,\cdot)\) \(\chi_{2656}(495,\cdot)\) \(\chi_{2656}(623,\cdot)\) \(\chi_{2656}(655,\cdot)\) \(\chi_{2656}(719,\cdot)\) \(\chi_{2656}(975,\cdot)\) \(\chi_{2656}(1039,\cdot)\) \(\chi_{2656}(1103,\cdot)\) \(\chi_{2656}(1135,\cdot)\) \(\chi_{2656}(1167,\cdot)\) \(\chi_{2656}(1263,\cdot)\) \(\chi_{2656}(1295,\cdot)\) \(\chi_{2656}(1487,\cdot)\) \(\chi_{2656}(1551,\cdot)\) \(\chi_{2656}(1583,\cdot)\) \(\chi_{2656}(1679,\cdot)\) \(\chi_{2656}(1775,\cdot)\) \(\chi_{2656}(1839,\cdot)\) \(\chi_{2656}(1871,\cdot)\) \(\chi_{2656}(1967,\cdot)\) \(\chi_{2656}(2031,\cdot)\) \(\chi_{2656}(2063,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{41})$
Fixed field: Number field defined by a degree 82 polynomial

Values on generators

\((831,997,417)\) → \((-1,-1,e\left(\frac{21}{82}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 2656 }(655, a) \) \(1\)\(1\)\(e\left(\frac{18}{41}\right)\)\(e\left(\frac{17}{41}\right)\)\(e\left(\frac{45}{82}\right)\)\(e\left(\frac{36}{41}\right)\)\(e\left(\frac{6}{41}\right)\)\(e\left(\frac{9}{41}\right)\)\(e\left(\frac{35}{41}\right)\)\(e\left(\frac{14}{41}\right)\)\(e\left(\frac{3}{82}\right)\)\(e\left(\frac{81}{82}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2656 }(655,a) \;\) at \(\;a = \) e.g. 2