sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(265, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([39,49]))
pari:[g,chi] = znchar(Mod(73,265))
| Modulus: | \(265\) | |
| Conductor: | \(265\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(52\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{265}(3,\cdot)\)
\(\chi_{265}(12,\cdot)\)
\(\chi_{265}(22,\cdot)\)
\(\chi_{265}(27,\cdot)\)
\(\chi_{265}(48,\cdot)\)
\(\chi_{265}(67,\cdot)\)
\(\chi_{265}(73,\cdot)\)
\(\chi_{265}(87,\cdot)\)
\(\chi_{265}(88,\cdot)\)
\(\chi_{265}(98,\cdot)\)
\(\chi_{265}(108,\cdot)\)
\(\chi_{265}(127,\cdot)\)
\(\chi_{265}(138,\cdot)\)
\(\chi_{265}(157,\cdot)\)
\(\chi_{265}(167,\cdot)\)
\(\chi_{265}(177,\cdot)\)
\(\chi_{265}(178,\cdot)\)
\(\chi_{265}(192,\cdot)\)
\(\chi_{265}(198,\cdot)\)
\(\chi_{265}(217,\cdot)\)
\(\chi_{265}(238,\cdot)\)
\(\chi_{265}(243,\cdot)\)
\(\chi_{265}(253,\cdot)\)
\(\chi_{265}(262,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((107,161)\) → \((-i,e\left(\frac{49}{52}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
| \( \chi_{ 265 }(73, a) \) |
\(1\) | \(1\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{45}{52}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)