sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2600, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([0,30,39,55]))
pari:[g,chi] = znchar(Mod(917,2600))
Modulus: | \(2600\) | |
Conductor: | \(2600\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2600}(37,\cdot)\)
\(\chi_{2600}(253,\cdot)\)
\(\chi_{2600}(397,\cdot)\)
\(\chi_{2600}(613,\cdot)\)
\(\chi_{2600}(773,\cdot)\)
\(\chi_{2600}(917,\cdot)\)
\(\chi_{2600}(1077,\cdot)\)
\(\chi_{2600}(1133,\cdot)\)
\(\chi_{2600}(1437,\cdot)\)
\(\chi_{2600}(1597,\cdot)\)
\(\chi_{2600}(1653,\cdot)\)
\(\chi_{2600}(1813,\cdot)\)
\(\chi_{2600}(2117,\cdot)\)
\(\chi_{2600}(2173,\cdot)\)
\(\chi_{2600}(2333,\cdot)\)
\(\chi_{2600}(2477,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1951,1301,1977,1601)\) → \((1,-1,e\left(\frac{13}{20}\right),e\left(\frac{11}{12}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 2600 }(917, a) \) |
\(1\) | \(1\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{7}{15}\right)\) |
sage:chi.jacobi_sum(n)