Properties

Label 2580.79
Modulus $2580$
Conductor $860$
Order $6$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2580, base_ring=CyclotomicField(6)) M = H._module chi = DirichletCharacter(H, M([3,0,3,2]))
 
Copy content pari:[g,chi] = znchar(Mod(79,2580))
 

Basic properties

Modulus: \(2580\)
Conductor: \(860\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(6\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{860}(79,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2580.bc

\(\chi_{2580}(79,\cdot)\) \(\chi_{2580}(1339,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(\zeta_3)\)
Fixed field: 6.0.27350408000.3

Values on generators

\((1291,1721,517,1981)\) → \((-1,1,-1,e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2580 }(79, a) \) \(-1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(-1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{6}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2580 }(79,a) \;\) at \(\;a = \) e.g. 2