sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2580, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,7,0,10]))
pari:[g,chi] = znchar(Mod(11,2580))
\(\chi_{2580}(11,\cdot)\)
\(\chi_{2580}(551,\cdot)\)
\(\chi_{2580}(1091,\cdot)\)
\(\chi_{2580}(1331,\cdot)\)
\(\chi_{2580}(2111,\cdot)\)
\(\chi_{2580}(2171,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1291,1721,517,1981)\) → \((-1,-1,1,e\left(\frac{5}{7}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 2580 }(11, a) \) |
\(1\) | \(1\) | \(-1\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(1\) | \(e\left(\frac{11}{14}\right)\) |
sage:chi.jacobi_sum(n)