sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2580, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([14,14,21,26]))
pari:[g,chi] = znchar(Mod(1943,2580))
Modulus: | \(2580\) | |
Conductor: | \(2580\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(28\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2580}(323,\cdot)\)
\(\chi_{2580}(383,\cdot)\)
\(\chi_{2580}(647,\cdot)\)
\(\chi_{2580}(887,\cdot)\)
\(\chi_{2580}(1163,\cdot)\)
\(\chi_{2580}(1403,\cdot)\)
\(\chi_{2580}(1427,\cdot)\)
\(\chi_{2580}(1943,\cdot)\)
\(\chi_{2580}(1967,\cdot)\)
\(\chi_{2580}(2387,\cdot)\)
\(\chi_{2580}(2447,\cdot)\)
\(\chi_{2580}(2483,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1291,1721,517,1981)\) → \((-1,-1,-i,e\left(\frac{13}{14}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 2580 }(1943, a) \) |
\(1\) | \(1\) | \(-i\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(i\) | \(e\left(\frac{1}{14}\right)\) |
sage:chi.jacobi_sum(n)