Properties

Label 2565.674
Modulus $2565$
Conductor $285$
Order $18$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2565, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,9,8]))
 
Copy content pari:[g,chi] = znchar(Mod(674,2565))
 

Basic properties

Modulus: \(2565\)
Conductor: \(285\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{285}(104,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2565.fg

\(\chi_{2565}(404,\cdot)\) \(\chi_{2565}(674,\cdot)\) \(\chi_{2565}(1214,\cdot)\) \(\chi_{2565}(1619,\cdot)\) \(\chi_{2565}(1754,\cdot)\) \(\chi_{2565}(2429,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((191,1027,1351)\) → \((-1,-1,e\left(\frac{4}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(22\)
\( \chi_{ 2565 }(674, a) \) \(-1\)\(1\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{5}{18}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2565 }(674,a) \;\) at \(\;a = \) e.g. 2