Properties

Label 2565.2287
Modulus $2565$
Conductor $855$
Order $12$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2565, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([8,3,4]))
 
Copy content pari:[g,chi] = znchar(Mod(2287,2565))
 

Basic properties

Modulus: \(2565\)
Conductor: \(855\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{855}(7,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2565.cf

\(\chi_{2565}(748,\cdot)\) \(\chi_{2565}(847,\cdot)\) \(\chi_{2565}(1873,\cdot)\) \(\chi_{2565}(2287,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.1427903710569997189453125.3

Values on generators

\((191,1027,1351)\) → \((e\left(\frac{2}{3}\right),i,e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(22\)
\( \chi_{ 2565 }(2287, a) \) \(-1\)\(1\)\(i\)\(-1\)\(e\left(\frac{11}{12}\right)\)\(-i\)\(e\left(\frac{2}{3}\right)\)\(-i\)\(e\left(\frac{1}{6}\right)\)\(1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{11}{12}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2565 }(2287,a) \;\) at \(\;a = \) e.g. 2