Properties

Label 256.219
Modulus $256$
Conductor $256$
Order $64$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(256, base_ring=CyclotomicField(64)) M = H._module chi = DirichletCharacter(H, M([32,25]))
 
Copy content pari:[g,chi] = znchar(Mod(219,256))
 

Basic properties

Modulus: \(256\)
Conductor: \(256\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(64\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 256.n

\(\chi_{256}(3,\cdot)\) \(\chi_{256}(11,\cdot)\) \(\chi_{256}(19,\cdot)\) \(\chi_{256}(27,\cdot)\) \(\chi_{256}(35,\cdot)\) \(\chi_{256}(43,\cdot)\) \(\chi_{256}(51,\cdot)\) \(\chi_{256}(59,\cdot)\) \(\chi_{256}(67,\cdot)\) \(\chi_{256}(75,\cdot)\) \(\chi_{256}(83,\cdot)\) \(\chi_{256}(91,\cdot)\) \(\chi_{256}(99,\cdot)\) \(\chi_{256}(107,\cdot)\) \(\chi_{256}(115,\cdot)\) \(\chi_{256}(123,\cdot)\) \(\chi_{256}(131,\cdot)\) \(\chi_{256}(139,\cdot)\) \(\chi_{256}(147,\cdot)\) \(\chi_{256}(155,\cdot)\) \(\chi_{256}(163,\cdot)\) \(\chi_{256}(171,\cdot)\) \(\chi_{256}(179,\cdot)\) \(\chi_{256}(187,\cdot)\) \(\chi_{256}(195,\cdot)\) \(\chi_{256}(203,\cdot)\) \(\chi_{256}(211,\cdot)\) \(\chi_{256}(219,\cdot)\) \(\chi_{256}(227,\cdot)\) \(\chi_{256}(235,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{64})$
Fixed field: Number field defined by a degree 64 polynomial

Values on generators

\((255,5)\) → \((-1,e\left(\frac{25}{64}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 256 }(219, a) \) \(-1\)\(1\)\(e\left(\frac{11}{64}\right)\)\(e\left(\frac{25}{64}\right)\)\(e\left(\frac{13}{32}\right)\)\(e\left(\frac{11}{32}\right)\)\(e\left(\frac{45}{64}\right)\)\(e\left(\frac{23}{64}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{31}{64}\right)\)\(e\left(\frac{37}{64}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 256 }(219,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 256 }(219,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 256 }(219,·),\chi_{ 256 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 256 }(219,·)) \;\) at \(\; a,b = \) e.g. 1,2