Properties

Label 254144.7031
Modulus $254144$
Conductor $127072$
Order $760$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(254144, base_ring=CyclotomicField(760)) M = H._module chi = DirichletCharacter(H, M([380,285,76,120]))
 
Copy content pari:[g,chi] = znchar(Mod(7031,254144))
 

Basic properties

Modulus: \(254144\)
Conductor: \(127072\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(760\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{127072}(22915,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 254144.ot

\(\chi_{254144}(39,\cdot)\) \(\chi_{254144}(343,\cdot)\) \(\chi_{254144}(1559,\cdot)\) \(\chi_{254144}(2471,\cdot)\) \(\chi_{254144}(3383,\cdot)\) \(\chi_{254144}(3687,\cdot)\) \(\chi_{254144}(4903,\cdot)\) \(\chi_{254144}(5815,\cdot)\) \(\chi_{254144}(6727,\cdot)\) \(\chi_{254144}(7031,\cdot)\) \(\chi_{254144}(8247,\cdot)\) \(\chi_{254144}(9159,\cdot)\) \(\chi_{254144}(10071,\cdot)\) \(\chi_{254144}(10375,\cdot)\) \(\chi_{254144}(11591,\cdot)\) \(\chi_{254144}(12503,\cdot)\) \(\chi_{254144}(13415,\cdot)\) \(\chi_{254144}(14935,\cdot)\) \(\chi_{254144}(15847,\cdot)\) \(\chi_{254144}(16759,\cdot)\) \(\chi_{254144}(17063,\cdot)\) \(\chi_{254144}(18279,\cdot)\) \(\chi_{254144}(19191,\cdot)\) \(\chi_{254144}(20103,\cdot)\) \(\chi_{254144}(20407,\cdot)\) \(\chi_{254144}(21623,\cdot)\) \(\chi_{254144}(22535,\cdot)\) \(\chi_{254144}(23447,\cdot)\) \(\chi_{254144}(23751,\cdot)\) \(\chi_{254144}(24967,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{760})$
Fixed field: Number field defined by a degree 760 polynomial (not computed)

Values on generators

\((166783,174725,69313,14081)\) → \((-1,e\left(\frac{3}{8}\right),e\left(\frac{1}{10}\right),e\left(\frac{3}{19}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 254144 }(7031, a) \) \(1\)\(1\)\(e\left(\frac{283}{760}\right)\)\(e\left(\frac{309}{760}\right)\)\(e\left(\frac{241}{380}\right)\)\(e\left(\frac{283}{380}\right)\)\(e\left(\frac{511}{760}\right)\)\(e\left(\frac{74}{95}\right)\)\(e\left(\frac{8}{95}\right)\)\(e\left(\frac{1}{152}\right)\)\(e\left(\frac{61}{76}\right)\)\(e\left(\frac{309}{380}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 254144 }(7031,a) \;\) at \(\;a = \) e.g. 2