Properties

Label 254144.5083
Modulus $254144$
Conductor $23104$
Order $2736$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(254144, base_ring=CyclotomicField(2736)) M = H._module chi = DirichletCharacter(H, M([1368,1539,0,136]))
 
Copy content pari:[g,chi] = znchar(Mod(5083,254144))
 

Basic properties

Modulus: \(254144\)
Conductor: \(23104\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2736\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{23104}(5083,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 254144.qz

\(\chi_{254144}(67,\cdot)\) \(\chi_{254144}(155,\cdot)\) \(\chi_{254144}(243,\cdot)\) \(\chi_{254144}(507,\cdot)\) \(\chi_{254144}(1123,\cdot)\) \(\chi_{254144}(1211,\cdot)\) \(\chi_{254144}(1739,\cdot)\) \(\chi_{254144}(1827,\cdot)\) \(\chi_{254144}(1915,\cdot)\) \(\chi_{254144}(2179,\cdot)\) \(\chi_{254144}(2795,\cdot)\) \(\chi_{254144}(2883,\cdot)\) \(\chi_{254144}(3411,\cdot)\) \(\chi_{254144}(3499,\cdot)\) \(\chi_{254144}(3587,\cdot)\) \(\chi_{254144}(3851,\cdot)\) \(\chi_{254144}(4467,\cdot)\) \(\chi_{254144}(4555,\cdot)\) \(\chi_{254144}(5083,\cdot)\) \(\chi_{254144}(5171,\cdot)\) \(\chi_{254144}(5259,\cdot)\) \(\chi_{254144}(5523,\cdot)\) \(\chi_{254144}(6139,\cdot)\) \(\chi_{254144}(6227,\cdot)\) \(\chi_{254144}(6755,\cdot)\) \(\chi_{254144}(6843,\cdot)\) \(\chi_{254144}(6931,\cdot)\) \(\chi_{254144}(7195,\cdot)\) \(\chi_{254144}(7811,\cdot)\) \(\chi_{254144}(7899,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{2736})$
Fixed field: Number field defined by a degree 2736 polynomial (not computed)

Values on generators

\((166783,174725,69313,14081)\) → \((-1,e\left(\frac{9}{16}\right),1,e\left(\frac{17}{342}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 254144 }(5083, a) \) \(1\)\(1\)\(e\left(\frac{265}{2736}\right)\)\(e\left(\frac{259}{2736}\right)\)\(e\left(\frac{265}{456}\right)\)\(e\left(\frac{265}{1368}\right)\)\(e\left(\frac{2165}{2736}\right)\)\(e\left(\frac{131}{684}\right)\)\(e\left(\frac{673}{684}\right)\)\(e\left(\frac{1855}{2736}\right)\)\(e\left(\frac{865}{1368}\right)\)\(e\left(\frac{259}{1368}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 254144 }(5083,a) \;\) at \(\;a = \) e.g. 2