sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(25410, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,15,0,18]))
pari:[g,chi] = znchar(Mod(8443,25410))
\(\chi_{25410}(1933,\cdot)\)
\(\chi_{25410}(4033,\cdot)\)
\(\chi_{25410}(8443,\cdot)\)
\(\chi_{25410}(9913,\cdot)\)
\(\chi_{25410}(12097,\cdot)\)
\(\chi_{25410}(14197,\cdot)\)
\(\chi_{25410}(18607,\cdot)\)
\(\chi_{25410}(20077,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((8471,15247,14521,7141)\) → \((1,-i,1,e\left(\frac{9}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) | \(47\) |
| \( \chi_{ 25410 }(8443, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(i\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(-i\) | \(e\left(\frac{19}{20}\right)\) |
sage:chi.jacobi_sum(n)