Properties

Label 25410.7069
Modulus $25410$
Conductor $4235$
Order $110$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25410, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,55,55,27]))
 
Copy content pari:[g,chi] = znchar(Mod(7069,25410))
 

Basic properties

Modulus: \(25410\)
Conductor: \(4235\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(110\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4235}(2834,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 25410.fj

\(\chi_{25410}(139,\cdot)\) \(\chi_{25410}(349,\cdot)\) \(\chi_{25410}(1399,\cdot)\) \(\chi_{25410}(2239,\cdot)\) \(\chi_{25410}(2449,\cdot)\) \(\chi_{25410}(3709,\cdot)\) \(\chi_{25410}(4549,\cdot)\) \(\chi_{25410}(4969,\cdot)\) \(\chi_{25410}(6019,\cdot)\) \(\chi_{25410}(6859,\cdot)\) \(\chi_{25410}(7069,\cdot)\) \(\chi_{25410}(7279,\cdot)\) \(\chi_{25410}(8329,\cdot)\) \(\chi_{25410}(9379,\cdot)\) \(\chi_{25410}(9589,\cdot)\) \(\chi_{25410}(11479,\cdot)\) \(\chi_{25410}(11689,\cdot)\) \(\chi_{25410}(11899,\cdot)\) \(\chi_{25410}(12949,\cdot)\) \(\chi_{25410}(13789,\cdot)\) \(\chi_{25410}(13999,\cdot)\) \(\chi_{25410}(14209,\cdot)\) \(\chi_{25410}(15259,\cdot)\) \(\chi_{25410}(16099,\cdot)\) \(\chi_{25410}(16309,\cdot)\) \(\chi_{25410}(16519,\cdot)\) \(\chi_{25410}(17569,\cdot)\) \(\chi_{25410}(18409,\cdot)\) \(\chi_{25410}(18619,\cdot)\) \(\chi_{25410}(18829,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((8471,15247,14521,7141)\) → \((1,-1,-1,e\left(\frac{27}{110}\right))\)

First values

\(a\) \(-1\)\(1\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)\(47\)
\( \chi_{ 25410 }(7069, a) \) \(1\)\(1\)\(e\left(\frac{87}{110}\right)\)\(e\left(\frac{3}{110}\right)\)\(e\left(\frac{48}{55}\right)\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{19}{110}\right)\)\(e\left(\frac{67}{110}\right)\)\(e\left(\frac{89}{110}\right)\)\(e\left(\frac{8}{55}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{3}{55}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 25410 }(7069,a) \;\) at \(\;a = \) e.g. 2