sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(25410, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([0,165,275,291]))
pari:[g,chi] = znchar(Mod(6739,25410))
\(\chi_{25410}(19,\cdot)\)
\(\chi_{25410}(409,\cdot)\)
\(\chi_{25410}(1069,\cdot)\)
\(\chi_{25410}(1249,\cdot)\)
\(\chi_{25410}(1459,\cdot)\)
\(\chi_{25410}(1669,\cdot)\)
\(\chi_{25410}(2119,\cdot)\)
\(\chi_{25410}(2329,\cdot)\)
\(\chi_{25410}(2719,\cdot)\)
\(\chi_{25410}(3559,\cdot)\)
\(\chi_{25410}(3769,\cdot)\)
\(\chi_{25410}(3979,\cdot)\)
\(\chi_{25410}(4219,\cdot)\)
\(\chi_{25410}(4429,\cdot)\)
\(\chi_{25410}(4639,\cdot)\)
\(\chi_{25410}(5029,\cdot)\)
\(\chi_{25410}(5689,\cdot)\)
\(\chi_{25410}(5869,\cdot)\)
\(\chi_{25410}(6079,\cdot)\)
\(\chi_{25410}(6529,\cdot)\)
\(\chi_{25410}(6739,\cdot)\)
\(\chi_{25410}(6949,\cdot)\)
\(\chi_{25410}(7339,\cdot)\)
\(\chi_{25410}(7999,\cdot)\)
\(\chi_{25410}(8179,\cdot)\)
\(\chi_{25410}(8599,\cdot)\)
\(\chi_{25410}(8839,\cdot)\)
\(\chi_{25410}(9049,\cdot)\)
\(\chi_{25410}(9259,\cdot)\)
\(\chi_{25410}(9649,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((8471,15247,14521,7141)\) → \((1,-1,e\left(\frac{5}{6}\right),e\left(\frac{97}{110}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) | \(47\) |
| \( \chi_{ 25410 }(6739, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{110}\right)\) | \(e\left(\frac{179}{330}\right)\) | \(e\left(\frac{59}{165}\right)\) | \(e\left(\frac{59}{66}\right)\) | \(e\left(\frac{109}{110}\right)\) | \(e\left(\frac{221}{330}\right)\) | \(e\left(\frac{67}{330}\right)\) | \(e\left(\frac{43}{55}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{14}{165}\right)\) |
sage:chi.jacobi_sum(n)