Properties

Label 25410.6739
Modulus $25410$
Conductor $4235$
Order $330$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25410, base_ring=CyclotomicField(330)) M = H._module chi = DirichletCharacter(H, M([0,165,275,291]))
 
Copy content pari:[g,chi] = znchar(Mod(6739,25410))
 

Basic properties

Modulus: \(25410\)
Conductor: \(4235\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(330\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4235}(2504,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 25410.gr

\(\chi_{25410}(19,\cdot)\) \(\chi_{25410}(409,\cdot)\) \(\chi_{25410}(1069,\cdot)\) \(\chi_{25410}(1249,\cdot)\) \(\chi_{25410}(1459,\cdot)\) \(\chi_{25410}(1669,\cdot)\) \(\chi_{25410}(2119,\cdot)\) \(\chi_{25410}(2329,\cdot)\) \(\chi_{25410}(2719,\cdot)\) \(\chi_{25410}(3559,\cdot)\) \(\chi_{25410}(3769,\cdot)\) \(\chi_{25410}(3979,\cdot)\) \(\chi_{25410}(4219,\cdot)\) \(\chi_{25410}(4429,\cdot)\) \(\chi_{25410}(4639,\cdot)\) \(\chi_{25410}(5029,\cdot)\) \(\chi_{25410}(5689,\cdot)\) \(\chi_{25410}(5869,\cdot)\) \(\chi_{25410}(6079,\cdot)\) \(\chi_{25410}(6529,\cdot)\) \(\chi_{25410}(6739,\cdot)\) \(\chi_{25410}(6949,\cdot)\) \(\chi_{25410}(7339,\cdot)\) \(\chi_{25410}(7999,\cdot)\) \(\chi_{25410}(8179,\cdot)\) \(\chi_{25410}(8599,\cdot)\) \(\chi_{25410}(8839,\cdot)\) \(\chi_{25410}(9049,\cdot)\) \(\chi_{25410}(9259,\cdot)\) \(\chi_{25410}(9649,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{165})$
Fixed field: Number field defined by a degree 330 polynomial (not computed)

Values on generators

\((8471,15247,14521,7141)\) → \((1,-1,e\left(\frac{5}{6}\right),e\left(\frac{97}{110}\right))\)

First values

\(a\) \(-1\)\(1\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)\(47\)
\( \chi_{ 25410 }(6739, a) \) \(1\)\(1\)\(e\left(\frac{7}{110}\right)\)\(e\left(\frac{179}{330}\right)\)\(e\left(\frac{59}{165}\right)\)\(e\left(\frac{59}{66}\right)\)\(e\left(\frac{109}{110}\right)\)\(e\left(\frac{221}{330}\right)\)\(e\left(\frac{67}{330}\right)\)\(e\left(\frac{43}{55}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{14}{165}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 25410 }(6739,a) \;\) at \(\;a = \) e.g. 2