Properties

Label 25410.21541
Modulus $25410$
Conductor $77$
Order $15$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25410, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([0,0,10,24]))
 
Copy content pari:[g,chi] = znchar(Mod(21541,25410))
 

Basic properties

Modulus: \(25410\)
Conductor: \(77\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(15\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{77}(58,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 25410.cn

\(\chi_{25410}(2671,\cdot)\) \(\chi_{25410}(4141,\cdot)\) \(\chi_{25410}(8551,\cdot)\) \(\chi_{25410}(10651,\cdot)\) \(\chi_{25410}(13561,\cdot)\) \(\chi_{25410}(15031,\cdot)\) \(\chi_{25410}(19441,\cdot)\) \(\chi_{25410}(21541,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 15.15.886528337182930278529.1

Values on generators

\((8471,15247,14521,7141)\) → \((1,1,e\left(\frac{1}{3}\right),e\left(\frac{4}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)\(47\)
\( \chi_{ 25410 }(21541, a) \) \(1\)\(1\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{2}{5}\right)\)\(1\)\(e\left(\frac{1}{15}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 25410 }(21541,a) \;\) at \(\;a = \) e.g. 2