Properties

Label 25410.1481
Modulus $25410$
Conductor $2541$
Order $330$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25410, base_ring=CyclotomicField(330)) M = H._module chi = DirichletCharacter(H, M([165,0,220,51]))
 
Copy content pari:[g,chi] = znchar(Mod(1481,25410))
 

Basic properties

Modulus: \(25410\)
Conductor: \(2541\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(330\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2541}(1481,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 25410.gq

\(\chi_{25410}(431,\cdot)\) \(\chi_{25410}(611,\cdot)\) \(\chi_{25410}(821,\cdot)\) \(\chi_{25410}(1031,\cdot)\) \(\chi_{25410}(1271,\cdot)\) \(\chi_{25410}(1481,\cdot)\) \(\chi_{25410}(2081,\cdot)\) \(\chi_{25410}(2741,\cdot)\) \(\chi_{25410}(2921,\cdot)\) \(\chi_{25410}(3131,\cdot)\) \(\chi_{25410}(3341,\cdot)\) \(\chi_{25410}(3581,\cdot)\) \(\chi_{25410}(4001,\cdot)\) \(\chi_{25410}(4391,\cdot)\) \(\chi_{25410}(5051,\cdot)\) \(\chi_{25410}(5231,\cdot)\) \(\chi_{25410}(5441,\cdot)\) \(\chi_{25410}(5651,\cdot)\) \(\chi_{25410}(5891,\cdot)\) \(\chi_{25410}(6101,\cdot)\) \(\chi_{25410}(6311,\cdot)\) \(\chi_{25410}(6701,\cdot)\) \(\chi_{25410}(7361,\cdot)\) \(\chi_{25410}(7541,\cdot)\) \(\chi_{25410}(7751,\cdot)\) \(\chi_{25410}(7961,\cdot)\) \(\chi_{25410}(8411,\cdot)\) \(\chi_{25410}(8621,\cdot)\) \(\chi_{25410}(9011,\cdot)\) \(\chi_{25410}(9851,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{165})$
Fixed field: Number field defined by a degree 330 polynomial (not computed)

Values on generators

\((8471,15247,14521,7141)\) → \((-1,1,e\left(\frac{2}{3}\right),e\left(\frac{17}{110}\right))\)

First values

\(a\) \(-1\)\(1\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)\(47\)
\( \chi_{ 25410 }(1481, a) \) \(1\)\(1\)\(e\left(\frac{67}{110}\right)\)\(e\left(\frac{122}{165}\right)\)\(e\left(\frac{53}{330}\right)\)\(e\left(\frac{43}{66}\right)\)\(e\left(\frac{7}{55}\right)\)\(e\left(\frac{158}{165}\right)\)\(e\left(\frac{136}{165}\right)\)\(e\left(\frac{3}{55}\right)\)\(e\left(\frac{19}{22}\right)\)\(e\left(\frac{323}{330}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 25410 }(1481,a) \;\) at \(\;a = \) e.g. 2