Properties

Label 25410.14671
Modulus $25410$
Conductor $847$
Order $110$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25410, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,0,55,53]))
 
Copy content pari:[g,chi] = znchar(Mod(14671,25410))
 

Basic properties

Modulus: \(25410\)
Conductor: \(847\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(110\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{847}(272,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 25410.fv

\(\chi_{25410}(391,\cdot)\) \(\chi_{25410}(601,\cdot)\) \(\chi_{25410}(811,\cdot)\) \(\chi_{25410}(1861,\cdot)\) \(\chi_{25410}(2701,\cdot)\) \(\chi_{25410}(2911,\cdot)\) \(\chi_{25410}(3121,\cdot)\) \(\chi_{25410}(4171,\cdot)\) \(\chi_{25410}(5011,\cdot)\) \(\chi_{25410}(5221,\cdot)\) \(\chi_{25410}(5431,\cdot)\) \(\chi_{25410}(6481,\cdot)\) \(\chi_{25410}(7321,\cdot)\) \(\chi_{25410}(7531,\cdot)\) \(\chi_{25410}(8791,\cdot)\) \(\chi_{25410}(9631,\cdot)\) \(\chi_{25410}(10051,\cdot)\) \(\chi_{25410}(11101,\cdot)\) \(\chi_{25410}(11941,\cdot)\) \(\chi_{25410}(12151,\cdot)\) \(\chi_{25410}(12361,\cdot)\) \(\chi_{25410}(13411,\cdot)\) \(\chi_{25410}(14461,\cdot)\) \(\chi_{25410}(14671,\cdot)\) \(\chi_{25410}(16561,\cdot)\) \(\chi_{25410}(16771,\cdot)\) \(\chi_{25410}(16981,\cdot)\) \(\chi_{25410}(18031,\cdot)\) \(\chi_{25410}(18871,\cdot)\) \(\chi_{25410}(19081,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((8471,15247,14521,7141)\) → \((1,1,-1,e\left(\frac{53}{110}\right))\)

First values

\(a\) \(-1\)\(1\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)\(47\)
\( \chi_{ 25410 }(14671, a) \) \(1\)\(1\)\(e\left(\frac{9}{55}\right)\)\(e\left(\frac{6}{55}\right)\)\(e\left(\frac{27}{55}\right)\)\(e\left(\frac{8}{11}\right)\)\(e\left(\frac{21}{110}\right)\)\(e\left(\frac{103}{110}\right)\)\(e\left(\frac{13}{55}\right)\)\(e\left(\frac{32}{55}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{79}{110}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 25410 }(14671,a) \;\) at \(\;a = \) e.g. 2