sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2535, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,9,2]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(2513,2535))
         
     
    
  \(\chi_{2535}(23,\cdot)\)
  \(\chi_{2535}(992,\cdot)\)
  \(\chi_{2535}(1037,\cdot)\)
  \(\chi_{2535}(2513,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1691,1522,1861)\) → \((-1,-i,e\left(\frac{1}{6}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(14\) | \(16\) | \(17\) | \(19\) | \(22\) |       
    
    
      | \( \chi_{ 2535 }(2513, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)