sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2527, base_ring=CyclotomicField(114))
M = H._module
chi = DirichletCharacter(H, M([38,6]))
pari:[g,chi] = znchar(Mod(58,2527))
| Modulus: | \(2527\) | |
| Conductor: | \(2527\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(57\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2527}(39,\cdot)\)
\(\chi_{2527}(58,\cdot)\)
\(\chi_{2527}(172,\cdot)\)
\(\chi_{2527}(191,\cdot)\)
\(\chi_{2527}(305,\cdot)\)
\(\chi_{2527}(324,\cdot)\)
\(\chi_{2527}(438,\cdot)\)
\(\chi_{2527}(457,\cdot)\)
\(\chi_{2527}(571,\cdot)\)
\(\chi_{2527}(590,\cdot)\)
\(\chi_{2527}(704,\cdot)\)
\(\chi_{2527}(837,\cdot)\)
\(\chi_{2527}(856,\cdot)\)
\(\chi_{2527}(970,\cdot)\)
\(\chi_{2527}(989,\cdot)\)
\(\chi_{2527}(1103,\cdot)\)
\(\chi_{2527}(1122,\cdot)\)
\(\chi_{2527}(1236,\cdot)\)
\(\chi_{2527}(1255,\cdot)\)
\(\chi_{2527}(1369,\cdot)\)
\(\chi_{2527}(1388,\cdot)\)
\(\chi_{2527}(1502,\cdot)\)
\(\chi_{2527}(1521,\cdot)\)
\(\chi_{2527}(1635,\cdot)\)
\(\chi_{2527}(1654,\cdot)\)
\(\chi_{2527}(1768,\cdot)\)
\(\chi_{2527}(1787,\cdot)\)
\(\chi_{2527}(1901,\cdot)\)
\(\chi_{2527}(1920,\cdot)\)
\(\chi_{2527}(2034,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1445,1807)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{1}{19}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 2527 }(58, a) \) |
\(1\) | \(1\) | \(e\left(\frac{41}{57}\right)\) | \(e\left(\frac{37}{57}\right)\) | \(e\left(\frac{25}{57}\right)\) | \(e\left(\frac{50}{57}\right)\) | \(e\left(\frac{7}{19}\right)\) | \(e\left(\frac{3}{19}\right)\) | \(e\left(\frac{17}{57}\right)\) | \(e\left(\frac{34}{57}\right)\) | \(e\left(\frac{40}{57}\right)\) | \(e\left(\frac{5}{57}\right)\) |
sage:chi.jacobi_sum(n)