sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2527, base_ring=CyclotomicField(114))
M = H._module
chi = DirichletCharacter(H, M([95,31]))
pari:[g,chi] = znchar(Mod(1566,2527))
| Modulus: | \(2527\) | |
| Conductor: | \(2527\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(114\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2527}(31,\cdot)\)
\(\chi_{2527}(103,\cdot)\)
\(\chi_{2527}(164,\cdot)\)
\(\chi_{2527}(236,\cdot)\)
\(\chi_{2527}(297,\cdot)\)
\(\chi_{2527}(369,\cdot)\)
\(\chi_{2527}(502,\cdot)\)
\(\chi_{2527}(563,\cdot)\)
\(\chi_{2527}(635,\cdot)\)
\(\chi_{2527}(696,\cdot)\)
\(\chi_{2527}(768,\cdot)\)
\(\chi_{2527}(829,\cdot)\)
\(\chi_{2527}(901,\cdot)\)
\(\chi_{2527}(962,\cdot)\)
\(\chi_{2527}(1034,\cdot)\)
\(\chi_{2527}(1095,\cdot)\)
\(\chi_{2527}(1167,\cdot)\)
\(\chi_{2527}(1228,\cdot)\)
\(\chi_{2527}(1300,\cdot)\)
\(\chi_{2527}(1361,\cdot)\)
\(\chi_{2527}(1433,\cdot)\)
\(\chi_{2527}(1494,\cdot)\)
\(\chi_{2527}(1566,\cdot)\)
\(\chi_{2527}(1627,\cdot)\)
\(\chi_{2527}(1699,\cdot)\)
\(\chi_{2527}(1760,\cdot)\)
\(\chi_{2527}(1832,\cdot)\)
\(\chi_{2527}(1893,\cdot)\)
\(\chi_{2527}(1965,\cdot)\)
\(\chi_{2527}(2026,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1445,1807)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{31}{114}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 2527 }(1566, a) \) |
\(1\) | \(1\) | \(e\left(\frac{107}{114}\right)\) | \(e\left(\frac{12}{19}\right)\) | \(e\left(\frac{50}{57}\right)\) | \(e\left(\frac{29}{114}\right)\) | \(e\left(\frac{65}{114}\right)\) | \(e\left(\frac{31}{38}\right)\) | \(e\left(\frac{5}{19}\right)\) | \(e\left(\frac{11}{57}\right)\) | \(e\left(\frac{4}{57}\right)\) | \(e\left(\frac{29}{57}\right)\) |
sage:chi.jacobi_sum(n)