sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(248, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([15,15,29]))
pari:[g,chi] = znchar(Mod(83,248))
| Modulus: | \(248\) | |
| Conductor: | \(248\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(30\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{248}(3,\cdot)\)
\(\chi_{248}(11,\cdot)\)
\(\chi_{248}(43,\cdot)\)
\(\chi_{248}(75,\cdot)\)
\(\chi_{248}(83,\cdot)\)
\(\chi_{248}(115,\cdot)\)
\(\chi_{248}(179,\cdot)\)
\(\chi_{248}(203,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((63,125,65)\) → \((-1,-1,e\left(\frac{29}{30}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 248 }(83, a) \) |
\(1\) | \(1\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)