Properties

Label 248.83
Modulus $248$
Conductor $248$
Order $30$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(248, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([15,15,29]))
 
Copy content pari:[g,chi] = znchar(Mod(83,248))
 

Basic properties

Modulus: \(248\)
Conductor: \(248\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 248.bb

\(\chi_{248}(3,\cdot)\) \(\chi_{248}(11,\cdot)\) \(\chi_{248}(43,\cdot)\) \(\chi_{248}(75,\cdot)\) \(\chi_{248}(83,\cdot)\) \(\chi_{248}(115,\cdot)\) \(\chi_{248}(179,\cdot)\) \(\chi_{248}(203,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.30.624940867704923870335005165628439523412241657929737961472.1

Values on generators

\((63,125,65)\) → \((-1,-1,e\left(\frac{29}{30}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 248 }(83, a) \) \(1\)\(1\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{8}{15}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 248 }(83,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 248 }(83,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 248 }(83,·),\chi_{ 248 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 248 }(83,·)) \;\) at \(\; a,b = \) e.g. 1,2