Properties

Label 2475.2447
Modulus $2475$
Conductor $825$
Order $20$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2475, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([10,17,8]))
 
Copy content pari:[g,chi] = znchar(Mod(2447,2475))
 

Basic properties

Modulus: \(2475\)
Conductor: \(825\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{825}(797,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2475.da

\(\chi_{2475}(323,\cdot)\) \(\chi_{2475}(1142,\cdot)\) \(\chi_{2475}(1763,\cdot)\) \(\chi_{2475}(1853,\cdot)\) \(\chi_{2475}(1862,\cdot)\) \(\chi_{2475}(2033,\cdot)\) \(\chi_{2475}(2402,\cdot)\) \(\chi_{2475}(2447,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((551,2377,2026)\) → \((-1,e\left(\frac{17}{20}\right),e\left(\frac{2}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(13\)\(14\)\(16\)\(17\)\(19\)\(23\)
\( \chi_{ 2475 }(2447, a) \) \(1\)\(1\)\(-i\)\(-1\)\(e\left(\frac{1}{20}\right)\)\(i\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{4}{5}\right)\)\(1\)\(e\left(\frac{3}{20}\right)\)\(-1\)\(e\left(\frac{17}{20}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2475 }(2447,a) \;\) at \(\;a = \) e.g. 2