sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(24648, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([0,0,0,0,55]))
pari:[g,chi] = znchar(Mod(7489,24648))
\(\chi_{24648}(937,\cdot)\)
\(\chi_{24648}(1561,\cdot)\)
\(\chi_{24648}(2497,\cdot)\)
\(\chi_{24648}(4057,\cdot)\)
\(\chi_{24648}(6553,\cdot)\)
\(\chi_{24648}(7489,\cdot)\)
\(\chi_{24648}(7801,\cdot)\)
\(\chi_{24648}(8737,\cdot)\)
\(\chi_{24648}(9049,\cdot)\)
\(\chi_{24648}(9361,\cdot)\)
\(\chi_{24648}(9673,\cdot)\)
\(\chi_{24648}(11857,\cdot)\)
\(\chi_{24648}(12169,\cdot)\)
\(\chi_{24648}(12793,\cdot)\)
\(\chi_{24648}(13105,\cdot)\)
\(\chi_{24648}(13417,\cdot)\)
\(\chi_{24648}(14353,\cdot)\)
\(\chi_{24648}(15913,\cdot)\)
\(\chi_{24648}(16225,\cdot)\)
\(\chi_{24648}(18097,\cdot)\)
\(\chi_{24648}(18721,\cdot)\)
\(\chi_{24648}(20593,\cdot)\)
\(\chi_{24648}(21841,\cdot)\)
\(\chi_{24648}(22465,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((18487,12325,16433,11377,12169)\) → \((1,1,1,1,e\left(\frac{55}{78}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 24648 }(7489, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{29}{78}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{59}{78}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{7}{78}\right)\) |
sage:chi.jacobi_sum(n)