Properties

Label 24648.41
Modulus $24648$
Conductor $3081$
Order $156$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24648, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([0,0,78,13,150]))
 
Copy content pari:[g,chi] = znchar(Mod(41,24648))
 

Basic properties

Modulus: \(24648\)
Conductor: \(3081\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3081}(41,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 24648.qt

\(\chi_{24648}(41,\cdot)\) \(\chi_{24648}(137,\cdot)\) \(\chi_{24648}(665,\cdot)\) \(\chi_{24648}(1649,\cdot)\) \(\chi_{24648}(1913,\cdot)\) \(\chi_{24648}(2273,\cdot)\) \(\chi_{24648}(2585,\cdot)\) \(\chi_{24648}(3569,\cdot)\) \(\chi_{24648}(3833,\cdot)\) \(\chi_{24648}(4457,\cdot)\) \(\chi_{24648}(4673,\cdot)\) \(\chi_{24648}(5441,\cdot)\) \(\chi_{24648}(5705,\cdot)\) \(\chi_{24648}(6065,\cdot)\) \(\chi_{24648}(6233,\cdot)\) \(\chi_{24648}(6377,\cdot)\) \(\chi_{24648}(7625,\cdot)\) \(\chi_{24648}(8249,\cdot)\) \(\chi_{24648}(8465,\cdot)\) \(\chi_{24648}(9497,\cdot)\) \(\chi_{24648}(9665,\cdot)\) \(\chi_{24648}(10025,\cdot)\) \(\chi_{24648}(10601,\cdot)\) \(\chi_{24648}(12257,\cdot)\) \(\chi_{24648}(13409,\cdot)\) \(\chi_{24648}(13457,\cdot)\) \(\chi_{24648}(13817,\cdot)\) \(\chi_{24648}(14393,\cdot)\) \(\chi_{24648}(16049,\cdot)\) \(\chi_{24648}(16841,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((18487,12325,16433,11377,12169)\) → \((1,1,-1,e\left(\frac{1}{12}\right),e\left(\frac{25}{26}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 24648 }(41, a) \) \(-1\)\(1\)\(e\left(\frac{45}{52}\right)\)\(e\left(\frac{137}{156}\right)\)\(e\left(\frac{73}{156}\right)\)\(e\left(\frac{67}{78}\right)\)\(e\left(\frac{29}{156}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{19}{26}\right)\)\(e\left(\frac{16}{39}\right)\)\(e\left(\frac{31}{52}\right)\)\(e\left(\frac{29}{39}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 24648 }(41,a) \;\) at \(\;a = \) e.g. 2