Properties

Label 24648.115
Modulus $24648$
Conductor $8216$
Order $156$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24648, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([78,78,0,91,20]))
 
Copy content pari:[g,chi] = znchar(Mod(115,24648))
 

Basic properties

Modulus: \(24648\)
Conductor: \(8216\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{8216}(115,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 24648.qn

\(\chi_{24648}(19,\cdot)\) \(\chi_{24648}(115,\cdot)\) \(\chi_{24648}(163,\cdot)\) \(\chi_{24648}(643,\cdot)\) \(\chi_{24648}(1099,\cdot)\) \(\chi_{24648}(1315,\cdot)\) \(\chi_{24648}(1363,\cdot)\) \(\chi_{24648}(1675,\cdot)\) \(\chi_{24648}(3595,\cdot)\) \(\chi_{24648}(3763,\cdot)\) \(\chi_{24648}(4219,\cdot)\) \(\chi_{24648}(5107,\cdot)\) \(\chi_{24648}(5635,\cdot)\) \(\chi_{24648}(6403,\cdot)\) \(\chi_{24648}(8131,\cdot)\) \(\chi_{24648}(8179,\cdot)\) \(\chi_{24648}(10459,\cdot)\) \(\chi_{24648}(11299,\cdot)\) \(\chi_{24648}(11395,\cdot)\) \(\chi_{24648}(11971,\cdot)\) \(\chi_{24648}(12019,\cdot)\) \(\chi_{24648}(13123,\cdot)\) \(\chi_{24648}(13435,\cdot)\) \(\chi_{24648}(13795,\cdot)\) \(\chi_{24648}(14107,\cdot)\) \(\chi_{24648}(14371,\cdot)\) \(\chi_{24648}(15091,\cdot)\) \(\chi_{24648}(15139,\cdot)\) \(\chi_{24648}(15667,\cdot)\) \(\chi_{24648}(16603,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((18487,12325,16433,11377,12169)\) → \((-1,-1,1,e\left(\frac{7}{12}\right),e\left(\frac{5}{39}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 24648 }(115, a) \) \(1\)\(1\)\(e\left(\frac{109}{156}\right)\)\(e\left(\frac{37}{52}\right)\)\(e\left(\frac{125}{156}\right)\)\(e\left(\frac{67}{78}\right)\)\(e\left(\frac{1}{52}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{31}{78}\right)\)\(e\left(\frac{19}{78}\right)\)\(e\left(\frac{145}{156}\right)\)\(e\left(\frac{16}{39}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 24648 }(115,a) \;\) at \(\;a = \) e.g. 2