Properties

Label 2450.1147
Modulus $2450$
Conductor $1225$
Order $140$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2450, base_ring=CyclotomicField(140)) M = H._module chi = DirichletCharacter(H, M([119,130]))
 
Copy content pari:[g,chi] = znchar(Mod(1147,2450))
 

Basic properties

Modulus: \(2450\)
Conductor: \(1225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(140\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1225}(1147,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2450.bp

\(\chi_{2450}(13,\cdot)\) \(\chi_{2450}(27,\cdot)\) \(\chi_{2450}(83,\cdot)\) \(\chi_{2450}(153,\cdot)\) \(\chi_{2450}(167,\cdot)\) \(\chi_{2450}(223,\cdot)\) \(\chi_{2450}(237,\cdot)\) \(\chi_{2450}(363,\cdot)\) \(\chi_{2450}(377,\cdot)\) \(\chi_{2450}(433,\cdot)\) \(\chi_{2450}(447,\cdot)\) \(\chi_{2450}(503,\cdot)\) \(\chi_{2450}(517,\cdot)\) \(\chi_{2450}(573,\cdot)\) \(\chi_{2450}(713,\cdot)\) \(\chi_{2450}(727,\cdot)\) \(\chi_{2450}(797,\cdot)\) \(\chi_{2450}(853,\cdot)\) \(\chi_{2450}(867,\cdot)\) \(\chi_{2450}(923,\cdot)\) \(\chi_{2450}(937,\cdot)\) \(\chi_{2450}(1063,\cdot)\) \(\chi_{2450}(1133,\cdot)\) \(\chi_{2450}(1147,\cdot)\) \(\chi_{2450}(1203,\cdot)\) \(\chi_{2450}(1217,\cdot)\) \(\chi_{2450}(1287,\cdot)\) \(\chi_{2450}(1413,\cdot)\) \(\chi_{2450}(1427,\cdot)\) \(\chi_{2450}(1483,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{140})$
Fixed field: Number field defined by a degree 140 polynomial (not computed)

Values on generators

\((1177,101)\) → \((e\left(\frac{17}{20}\right),e\left(\frac{13}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 2450 }(1147, a) \) \(1\)\(1\)\(e\left(\frac{123}{140}\right)\)\(e\left(\frac{53}{70}\right)\)\(e\left(\frac{26}{35}\right)\)\(e\left(\frac{111}{140}\right)\)\(e\left(\frac{37}{140}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{89}{140}\right)\)\(e\left(\frac{89}{140}\right)\)\(e\left(\frac{29}{70}\right)\)\(e\left(\frac{3}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2450 }(1147,a) \;\) at \(\;a = \) e.g. 2