Properties

Label 2432.195
Modulus $2432$
Conductor $2432$
Order $288$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2432, base_ring=CyclotomicField(288)) M = H._module chi = DirichletCharacter(H, M([144,171,256]))
 
Copy content pari:[g,chi] = znchar(Mod(195,2432))
 

Basic properties

Modulus: \(2432\)
Conductor: \(2432\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(288\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2432.ct

\(\chi_{2432}(35,\cdot)\) \(\chi_{2432}(43,\cdot)\) \(\chi_{2432}(99,\cdot)\) \(\chi_{2432}(123,\cdot)\) \(\chi_{2432}(131,\cdot)\) \(\chi_{2432}(139,\cdot)\) \(\chi_{2432}(187,\cdot)\) \(\chi_{2432}(195,\cdot)\) \(\chi_{2432}(251,\cdot)\) \(\chi_{2432}(275,\cdot)\) \(\chi_{2432}(283,\cdot)\) \(\chi_{2432}(291,\cdot)\) \(\chi_{2432}(339,\cdot)\) \(\chi_{2432}(347,\cdot)\) \(\chi_{2432}(403,\cdot)\) \(\chi_{2432}(427,\cdot)\) \(\chi_{2432}(435,\cdot)\) \(\chi_{2432}(443,\cdot)\) \(\chi_{2432}(491,\cdot)\) \(\chi_{2432}(499,\cdot)\) \(\chi_{2432}(555,\cdot)\) \(\chi_{2432}(579,\cdot)\) \(\chi_{2432}(587,\cdot)\) \(\chi_{2432}(595,\cdot)\) \(\chi_{2432}(643,\cdot)\) \(\chi_{2432}(651,\cdot)\) \(\chi_{2432}(707,\cdot)\) \(\chi_{2432}(731,\cdot)\) \(\chi_{2432}(739,\cdot)\) \(\chi_{2432}(747,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{288})$
Fixed field: Number field defined by a degree 288 polynomial (not computed)

Values on generators

\((1407,2053,1921)\) → \((-1,e\left(\frac{19}{32}\right),e\left(\frac{8}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(21\)\(23\)
\( \chi_{ 2432 }(195, a) \) \(-1\)\(1\)\(e\left(\frac{241}{288}\right)\)\(e\left(\frac{235}{288}\right)\)\(e\left(\frac{37}{48}\right)\)\(e\left(\frac{97}{144}\right)\)\(e\left(\frac{61}{96}\right)\)\(e\left(\frac{101}{288}\right)\)\(e\left(\frac{47}{72}\right)\)\(e\left(\frac{37}{72}\right)\)\(e\left(\frac{175}{288}\right)\)\(e\left(\frac{85}{144}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2432 }(195,a) \;\) at \(\;a = \) e.g. 2