Properties

Label 24200.ho
Modulus $24200$
Conductor $3025$
Order $55$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24200, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,0,88,56])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(361,24200)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(24200\)
Conductor: \(3025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(55\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 3025.ca
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 55 polynomial

First 31 of 40 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{24200}(361,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{14}{55}\right)\)
\(\chi_{24200}(521,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{38}{55}\right)\)
\(\chi_{24200}(841,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{36}{55}\right)\)
\(\chi_{24200}(1081,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{42}{55}\right)\)
\(\chi_{24200}(2561,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{19}{55}\right)\)
\(\chi_{24200}(2721,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{8}{55}\right)\)
\(\chi_{24200}(3041,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{55}\right)\)
\(\chi_{24200}(3281,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{55}\right)\)
\(\chi_{24200}(4761,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{24}{55}\right)\)
\(\chi_{24200}(5241,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{21}{55}\right)\)
\(\chi_{24200}(5481,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{17}{55}\right)\)
\(\chi_{24200}(6961,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{29}{55}\right)\)
\(\chi_{24200}(7121,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{55}\right)\)
\(\chi_{24200}(7441,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{41}{55}\right)\)
\(\chi_{24200}(7681,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{32}{55}\right)\)
\(\chi_{24200}(9161,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{34}{55}\right)\)
\(\chi_{24200}(9321,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{28}{55}\right)\)
\(\chi_{24200}(9641,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{6}{55}\right)\)
\(\chi_{24200}(9881,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{47}{55}\right)\)
\(\chi_{24200}(11361,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{39}{55}\right)\)
\(\chi_{24200}(11521,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{53}{55}\right)\)
\(\chi_{24200}(11841,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{26}{55}\right)\)
\(\chi_{24200}(12081,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{55}\right)\)
\(\chi_{24200}(13721,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{23}{55}\right)\)
\(\chi_{24200}(14041,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{46}{55}\right)\)
\(\chi_{24200}(15761,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{49}{55}\right)\)
\(\chi_{24200}(15921,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{48}{55}\right)\)
\(\chi_{24200}(16481,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{37}{55}\right)\)
\(\chi_{24200}(17961,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{54}{55}\right)\)
\(\chi_{24200}(18121,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{18}{55}\right)\)
\(\chi_{24200}(18441,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{31}{55}\right)\)