Properties

Label 24200.4331
Modulus $24200$
Conductor $24200$
Order $110$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24200, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([55,55,44,93]))
 
Copy content pari:[g,chi] = znchar(Mod(4331,24200))
 

Basic properties

Modulus: \(24200\)
Conductor: \(24200\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(110\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 24200.ja

\(\chi_{24200}(211,\cdot)\) \(\chi_{24200}(1491,\cdot)\) \(\chi_{24200}(2131,\cdot)\) \(\chi_{24200}(3571,\cdot)\) \(\chi_{24200}(3691,\cdot)\) \(\chi_{24200}(4331,\cdot)\) \(\chi_{24200}(4611,\cdot)\) \(\chi_{24200}(5771,\cdot)\) \(\chi_{24200}(5891,\cdot)\) \(\chi_{24200}(6811,\cdot)\) \(\chi_{24200}(7971,\cdot)\) \(\chi_{24200}(8091,\cdot)\) \(\chi_{24200}(8731,\cdot)\) \(\chi_{24200}(9011,\cdot)\) \(\chi_{24200}(10171,\cdot)\) \(\chi_{24200}(10291,\cdot)\) \(\chi_{24200}(10931,\cdot)\) \(\chi_{24200}(11211,\cdot)\) \(\chi_{24200}(12371,\cdot)\) \(\chi_{24200}(12491,\cdot)\) \(\chi_{24200}(13131,\cdot)\) \(\chi_{24200}(13411,\cdot)\) \(\chi_{24200}(14571,\cdot)\) \(\chi_{24200}(14691,\cdot)\) \(\chi_{24200}(15331,\cdot)\) \(\chi_{24200}(15611,\cdot)\) \(\chi_{24200}(16771,\cdot)\) \(\chi_{24200}(16891,\cdot)\) \(\chi_{24200}(17531,\cdot)\) \(\chi_{24200}(17811,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((18151,12101,6777,14401)\) → \((-1,-1,e\left(\frac{2}{5}\right),e\left(\frac{93}{110}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 24200 }(4331, a) \) \(1\)\(1\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{23}{55}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{27}{55}\right)\)\(e\left(\frac{69}{110}\right)\)\(e\left(\frac{41}{110}\right)\)\(e\left(\frac{34}{55}\right)\)\(e\left(\frac{9}{110}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{37}{55}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 24200 }(4331,a) \;\) at \(\;a = \) e.g. 2