Properties

Label 2415.64
Modulus $2415$
Conductor $115$
Order $22$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2415, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([0,11,0,12]))
 
Copy content pari:[g,chi] = znchar(Mod(64,2415))
 

Basic properties

Modulus: \(2415\)
Conductor: \(115\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(22\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{115}(64,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2415.cg

\(\chi_{2415}(64,\cdot)\) \(\chi_{2415}(169,\cdot)\) \(\chi_{2415}(694,\cdot)\) \(\chi_{2415}(1324,\cdot)\) \(\chi_{2415}(1429,\cdot)\) \(\chi_{2415}(1534,\cdot)\) \(\chi_{2415}(1639,\cdot)\) \(\chi_{2415}(1849,\cdot)\) \(\chi_{2415}(2059,\cdot)\) \(\chi_{2415}(2164,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: 22.22.83796671451884098775580820361328125.1

Values on generators

\((806,967,346,1891)\) → \((1,-1,1,e\left(\frac{6}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(26\)
\( \chi_{ 2415 }(64, a) \) \(1\)\(1\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{17}{22}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{7}{22}\right)\)\(e\left(\frac{2}{11}\right)\)\(-1\)\(e\left(\frac{8}{11}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2415 }(64,a) \;\) at \(\;a = \) e.g. 2