sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2415, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([11,11,11,14]))
pari:[g,chi] = znchar(Mod(1784,2415))
Modulus: | \(2415\) | |
Conductor: | \(2415\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(22\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2415}(104,\cdot)\)
\(\chi_{2415}(209,\cdot)\)
\(\chi_{2415}(524,\cdot)\)
\(\chi_{2415}(629,\cdot)\)
\(\chi_{2415}(1154,\cdot)\)
\(\chi_{2415}(1784,\cdot)\)
\(\chi_{2415}(1889,\cdot)\)
\(\chi_{2415}(1994,\cdot)\)
\(\chi_{2415}(2099,\cdot)\)
\(\chi_{2415}(2309,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((806,967,346,1891)\) → \((-1,-1,-1,e\left(\frac{7}{11}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(26\) |
\( \chi_{ 2415 }(1784, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(-1\) | \(e\left(\frac{2}{11}\right)\) |
sage:chi.jacobi_sum(n)