Properties

Label 2415.163
Modulus $2415$
Conductor $805$
Order $132$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2415, base_ring=CyclotomicField(132)) M = H._module chi = DirichletCharacter(H, M([0,99,44,12]))
 
Copy content pari:[g,chi] = znchar(Mod(163,2415))
 

Basic properties

Modulus: \(2415\)
Conductor: \(805\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(132\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{805}(163,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2415.dp

\(\chi_{2415}(58,\cdot)\) \(\chi_{2415}(142,\cdot)\) \(\chi_{2415}(163,\cdot)\) \(\chi_{2415}(193,\cdot)\) \(\chi_{2415}(403,\cdot)\) \(\chi_{2415}(478,\cdot)\) \(\chi_{2415}(487,\cdot)\) \(\chi_{2415}(508,\cdot)\) \(\chi_{2415}(583,\cdot)\) \(\chi_{2415}(772,\cdot)\) \(\chi_{2415}(823,\cdot)\) \(\chi_{2415}(877,\cdot)\) \(\chi_{2415}(928,\cdot)\) \(\chi_{2415}(982,\cdot)\) \(\chi_{2415}(1087,\cdot)\) \(\chi_{2415}(1108,\cdot)\) \(\chi_{2415}(1117,\cdot)\) \(\chi_{2415}(1222,\cdot)\) \(\chi_{2415}(1297,\cdot)\) \(\chi_{2415}(1327,\cdot)\) \(\chi_{2415}(1432,\cdot)\) \(\chi_{2415}(1453,\cdot)\) \(\chi_{2415}(1507,\cdot)\) \(\chi_{2415}(1612,\cdot)\) \(\chi_{2415}(1642,\cdot)\) \(\chi_{2415}(1738,\cdot)\) \(\chi_{2415}(1843,\cdot)\) \(\chi_{2415}(1852,\cdot)\) \(\chi_{2415}(1927,\cdot)\) \(\chi_{2415}(1948,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{132})$
Fixed field: Number field defined by a degree 132 polynomial (not computed)

Values on generators

\((806,967,346,1891)\) → \((1,-i,e\left(\frac{1}{3}\right),e\left(\frac{1}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(26\)
\( \chi_{ 2415 }(163, a) \) \(-1\)\(1\)\(e\left(\frac{79}{132}\right)\)\(e\left(\frac{13}{66}\right)\)\(e\left(\frac{35}{44}\right)\)\(e\left(\frac{5}{33}\right)\)\(e\left(\frac{23}{44}\right)\)\(e\left(\frac{13}{33}\right)\)\(e\left(\frac{95}{132}\right)\)\(e\left(\frac{35}{66}\right)\)\(-i\)\(e\left(\frac{4}{33}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2415 }(163,a) \;\) at \(\;a = \) e.g. 2