Properties

Label 2415.1558
Modulus $2415$
Conductor $805$
Order $132$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2415, base_ring=CyclotomicField(132)) M = H._module chi = DirichletCharacter(H, M([0,99,88,42]))
 
Copy content pari:[g,chi] = znchar(Mod(1558,2415))
 

Basic properties

Modulus: \(2415\)
Conductor: \(805\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(132\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{805}(753,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2415.dn

\(\chi_{2415}(37,\cdot)\) \(\chi_{2415}(67,\cdot)\) \(\chi_{2415}(88,\cdot)\) \(\chi_{2415}(172,\cdot)\) \(\chi_{2415}(247,\cdot)\) \(\chi_{2415}(268,\cdot)\) \(\chi_{2415}(352,\cdot)\) \(\chi_{2415}(373,\cdot)\) \(\chi_{2415}(382,\cdot)\) \(\chi_{2415}(457,\cdot)\) \(\chi_{2415}(562,\cdot)\) \(\chi_{2415}(592,\cdot)\) \(\chi_{2415}(613,\cdot)\) \(\chi_{2415}(688,\cdot)\) \(\chi_{2415}(697,\cdot)\) \(\chi_{2415}(718,\cdot)\) \(\chi_{2415}(793,\cdot)\) \(\chi_{2415}(802,\cdot)\) \(\chi_{2415}(907,\cdot)\) \(\chi_{2415}(1003,\cdot)\) \(\chi_{2415}(1033,\cdot)\) \(\chi_{2415}(1138,\cdot)\) \(\chi_{2415}(1192,\cdot)\) \(\chi_{2415}(1213,\cdot)\) \(\chi_{2415}(1318,\cdot)\) \(\chi_{2415}(1348,\cdot)\) \(\chi_{2415}(1423,\cdot)\) \(\chi_{2415}(1528,\cdot)\) \(\chi_{2415}(1537,\cdot)\) \(\chi_{2415}(1558,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{132})$
Fixed field: Number field defined by a degree 132 polynomial (not computed)

Values on generators

\((806,967,346,1891)\) → \((1,-i,e\left(\frac{2}{3}\right),e\left(\frac{7}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(26\)
\( \chi_{ 2415 }(1558, a) \) \(1\)\(1\)\(e\left(\frac{95}{132}\right)\)\(e\left(\frac{29}{66}\right)\)\(e\left(\frac{7}{44}\right)\)\(e\left(\frac{35}{66}\right)\)\(e\left(\frac{31}{44}\right)\)\(e\left(\frac{29}{33}\right)\)\(e\left(\frac{85}{132}\right)\)\(e\left(\frac{20}{33}\right)\)\(i\)\(e\left(\frac{14}{33}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2415 }(1558,a) \;\) at \(\;a = \) e.g. 2