Properties

Label 2415.1342
Modulus $2415$
Conductor $805$
Order $132$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2415, base_ring=CyclotomicField(132)) M = H._module chi = DirichletCharacter(H, M([0,33,110,36]))
 
Copy content pari:[g,chi] = znchar(Mod(1342,2415))
 

Basic properties

Modulus: \(2415\)
Conductor: \(805\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(132\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{805}(537,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2415.dr

\(\chi_{2415}(52,\cdot)\) \(\chi_{2415}(73,\cdot)\) \(\chi_{2415}(82,\cdot)\) \(\chi_{2415}(187,\cdot)\) \(\chi_{2415}(262,\cdot)\) \(\chi_{2415}(292,\cdot)\) \(\chi_{2415}(397,\cdot)\) \(\chi_{2415}(418,\cdot)\) \(\chi_{2415}(472,\cdot)\) \(\chi_{2415}(577,\cdot)\) \(\chi_{2415}(607,\cdot)\) \(\chi_{2415}(703,\cdot)\) \(\chi_{2415}(808,\cdot)\) \(\chi_{2415}(817,\cdot)\) \(\chi_{2415}(892,\cdot)\) \(\chi_{2415}(913,\cdot)\) \(\chi_{2415}(922,\cdot)\) \(\chi_{2415}(997,\cdot)\) \(\chi_{2415}(1018,\cdot)\) \(\chi_{2415}(1048,\cdot)\) \(\chi_{2415}(1153,\cdot)\) \(\chi_{2415}(1228,\cdot)\) \(\chi_{2415}(1237,\cdot)\) \(\chi_{2415}(1258,\cdot)\) \(\chi_{2415}(1342,\cdot)\) \(\chi_{2415}(1363,\cdot)\) \(\chi_{2415}(1438,\cdot)\) \(\chi_{2415}(1522,\cdot)\) \(\chi_{2415}(1543,\cdot)\) \(\chi_{2415}(1573,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{132})$
Fixed field: Number field defined by a degree 132 polynomial (not computed)

Values on generators

\((806,967,346,1891)\) → \((1,i,e\left(\frac{5}{6}\right),e\left(\frac{3}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(26\)
\( \chi_{ 2415 }(1342, a) \) \(1\)\(1\)\(e\left(\frac{61}{132}\right)\)\(e\left(\frac{61}{66}\right)\)\(e\left(\frac{17}{44}\right)\)\(e\left(\frac{26}{33}\right)\)\(e\left(\frac{3}{44}\right)\)\(e\left(\frac{28}{33}\right)\)\(e\left(\frac{131}{132}\right)\)\(e\left(\frac{25}{33}\right)\)\(i\)\(e\left(\frac{35}{66}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2415 }(1342,a) \;\) at \(\;a = \) e.g. 2