sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2415, base_ring=CyclotomicField(132))
M = H._module
chi = DirichletCharacter(H, M([66,33,88,24]))
pari:[g,chi] = znchar(Mod(1292,2415))
Modulus: | \(2415\) | |
Conductor: | \(2415\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(132\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2415}(2,\cdot)\)
\(\chi_{2415}(32,\cdot)\)
\(\chi_{2415}(128,\cdot)\)
\(\chi_{2415}(233,\cdot)\)
\(\chi_{2415}(242,\cdot)\)
\(\chi_{2415}(317,\cdot)\)
\(\chi_{2415}(338,\cdot)\)
\(\chi_{2415}(347,\cdot)\)
\(\chi_{2415}(422,\cdot)\)
\(\chi_{2415}(443,\cdot)\)
\(\chi_{2415}(473,\cdot)\)
\(\chi_{2415}(578,\cdot)\)
\(\chi_{2415}(653,\cdot)\)
\(\chi_{2415}(662,\cdot)\)
\(\chi_{2415}(683,\cdot)\)
\(\chi_{2415}(767,\cdot)\)
\(\chi_{2415}(788,\cdot)\)
\(\chi_{2415}(863,\cdot)\)
\(\chi_{2415}(947,\cdot)\)
\(\chi_{2415}(968,\cdot)\)
\(\chi_{2415}(998,\cdot)\)
\(\chi_{2415}(1208,\cdot)\)
\(\chi_{2415}(1283,\cdot)\)
\(\chi_{2415}(1292,\cdot)\)
\(\chi_{2415}(1313,\cdot)\)
\(\chi_{2415}(1388,\cdot)\)
\(\chi_{2415}(1577,\cdot)\)
\(\chi_{2415}(1628,\cdot)\)
\(\chi_{2415}(1682,\cdot)\)
\(\chi_{2415}(1733,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((806,967,346,1891)\) → \((-1,i,e\left(\frac{2}{3}\right),e\left(\frac{2}{11}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(26\) |
\( \chi_{ 2415 }(1292, a) \) |
\(1\) | \(1\) | \(e\left(\frac{59}{132}\right)\) | \(e\left(\frac{59}{66}\right)\) | \(e\left(\frac{15}{44}\right)\) | \(e\left(\frac{53}{66}\right)\) | \(e\left(\frac{13}{44}\right)\) | \(e\left(\frac{26}{33}\right)\) | \(e\left(\frac{91}{132}\right)\) | \(e\left(\frac{37}{66}\right)\) | \(i\) | \(e\left(\frac{49}{66}\right)\) |
sage:chi.jacobi_sum(n)