sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2394, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([15,15,16]))
pari:[g,chi] = znchar(Mod(5,2394))
\(\chi_{2394}(5,\cdot)\)
\(\chi_{2394}(101,\cdot)\)
\(\chi_{2394}(131,\cdot)\)
\(\chi_{2394}(479,\cdot)\)
\(\chi_{2394}(731,\cdot)\)
\(\chi_{2394}(1517,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((533,1711,1009)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{5}{6}\right),e\left(\frac{8}{9}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 2394 }(5, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{9}\right)\) |
sage:chi.jacobi_sum(n)